494,491 research outputs found

    Boosted Statistical Mechanics

    Full text link
    Based on the fundamental principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary, proof of the relation between fundamental observables of a statistical system when measured relatively to two inertial reference frames, connected by a Lorentz transformation.Comment: 8 page

    Hamiltonian statistical mechanics

    Full text link
    A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the reference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.Comment: 8 pages, 2 figures, references adde

    Equilibrium Statistical Mechanics

    Full text link
    An introductory review of Classical Statistical MechanicsComment: 56 page

    Semiclassical Statistical Mechanics

    Get PDF
    We use a semiclassical approximation to derive the partition function for an arbitrary potential in one-dimensional Quantum Statistical Mechanics, which we view as an example of finite temperature scalar Field Theory at a point. We rely on Catastrophe Theory to analyze the pattern of extrema of the corresponding path-integral. We exhibit the propagator in the background of the different extrema and use it to compute the fluctuation determinant and to develop a (nonperturbative) semiclassical expansion which allows for the calculation of correlation functions. We discuss the examples of the single and double-well quartic anharmonic oscillators, and the implications of our results for higher dimensions.Comment: Invited talk at the La Plata meeting on `Trends in Theoretical Physics', La Plata, April, 1997; 14 pages + 5 ps figures. Some cosmetical modifications, and addition of some references which were missing in the previous versio

    Generalization of Classical Statistical Mechanics to Quantum Mechanics and Stable Property of Condensed Matter

    Full text link
    Classical statistical average values are generally generalized to average values of quantum mechanics, it is discovered that quantum mechanics is direct generalization of classical statistical mechanics, and we generally deduce both a new general continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, the general classical statistical uncertain relation is generally generalized to quantum uncertainty principle, the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among uncertainty principle, singularity and condensed matter stability, discover that quantum uncertainty principle prevents from the appearance of singularity of the electromagnetic potential between nucleus and electrons, and give the failure conditions of quantum uncertainty principle. Finally, we discover that the classical limit of quantum mechanics is classical statistical mechanics, the classical statistical mechanics may further be degenerated to classical mechanics, and we discover that only saying that the classical limit of quantum mechanics is classical mechanics is mistake. As application examples, we deduce both Shrodinger equation and state superposition principle, deduce that there exist decoherent factor from a general mathematical representation of state superposition principle, and the consistent difficulty between statistical interpretation of quantum mechanics and determinant property of classical mechanics is overcome.Comment: 10 page

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages
    • …
    corecore